A White Paper: Software for the Real World

Miniature Software for Large Pervasive Computing Applications

David B. Stewart
Embedded Research Solutions, LLC
9687F Gerwig Lane, Columbia, MD 21046
dstewart@embedded-zone.com

There is a need for new software engineering methods that apply specifically and exclusively to the implementation of
real-time code for pervasive computing applications. Applications will consist of hundreds or thousands of tiny process-
ing units. While it is expected that model-based tools and aspect-oriented techniques will be used to reason and design
the large complex applications, there is currently a huge gap between the use of these tools and techniques, and the
underlying implementation of the executable code on future system-on-a-chip designs. To both support component-based
design in these applications, while adhering to the very rigid constraints of the target hardware and devices, significant
software advances are needed in the areas of separation of concerns, components, real-world interfacing, frameworks,
multi-dimensional resource optimization, hardware/software co-design, and networking of miniature devices, as applied
specifically to very small embedded systems.

Introduction

There is a need for new software engineering methods that apply specifically and exclusively to the implementation
of real-time code for pervasive computing applications. Applications will have hundreds to thousands of processing
nodes embedded into everything, including clothing, objects, soil, liquids, and any other medium for which sensory
information or intelligence is desired. The processors will communicate amongst themselves and a base station,
both through very fine wires if embedded within a single item like clothing, or wireless with perhaps all the proces-
sors within an area of a few hundred square feet. Each node—including the processor, sensors, actuators, and power
source—will be smaller than one or two square centimeters, and in some cases barely visible to the naked eye.

What will the software look like for these systems? We call it miniature software. The term captures the physical
nature of the underlying hardware, and requires entirely new approaches as compared to the software engineering
advances in the desktop and larger embedded system domains. Technologies such as Java, CORBA, wireless net-
working protocols, POSIX, middleware, and UML-based modelling all lead to software that is simply much too big
for the target hardware. The techniques have been modified and streamlined for use in embedded systems. But the
results, such as Real-Time Java, RT CORBA, Bluetooth wireless networking, and Embedded UML, are still too big
in terms of memory, processor, and power usage, by two or more orders of magnitude!

Instead of trying to adapt desktop approaches to miniature systems, new techniques are needed that are designed
specifically to address the software needs of pervasive computing applications. In particular, software must be engi-
neered with the same precision as mechanical assemblies, where every byte of data or code used on the target system
would undergo the same scrutiny as the choice of a bolt, wire, or subcomponent in the mechanical assembly. Such a
level of precision for software is non-existent today.

It is expected that the solution will use and combine the knowledge learned in the areas of aspect-oriented program-
ming (AOP), model-based design, component frameworks, and hardware-software co-design techniques. This white
paper discusses a number of relevant issues, and presents a vision of the resulting software environment.

Pervasive Computing Applications

The National Institutes of Standards and Technology (NIST) defined pervasive computing as, “the strongly emerg-
ing trend toward numerous, casually accessible, often invisible computing devices, frequently mobile or embedded
in the environment, and connected to an increasingly ubiquitous network structure.” [4]

There exist potential applications of pervasive computing technology in nearly every aspect of our world. Some
examples include inventory tracking, environmental monitoring of toxic substances, human physiological monitor-
ing, and machine health and diagnostics. The list of potential applications is limited only by creativity. Some appli-
cations could have such an impact as to redefine and improve what is considered standard living in our society.

There has been some research seeking related solutions. For example, DARPA is already funding projects on topics
related to autonomous negotiating teams, electronic textiles, and microsensor networks. While some of these
projects do address small software, such as Berkeley’s TinyOS project [3], the general trend is to address a small
number of issues in order to demonstrate feasibility of a specific application or algorithm. There is not a concerted

Embedded Research Solutions Page 1 of 5

Miniature Software for Large Pervasive Computing Applications D. Stewart

Table 1: Comparison of Characteristics of Representative Embedded Processors

Application Constraints Resource Constraints
Current Cost | 1l m M E'xan_lple
Processor Development| Peak thnitr?er Package| CPU |Internal é‘;?.{g:n Extear)l(1al CF?l).(J Application that
; . . uses this
Support | Power A Size | Size | RAM Flash| RAM+ | Speed
(mWatt)| QU3NUY |2 | (bits) | (bytes) [OF F12S pee processor
of 1000 (bytes) [ROM | (MHz)
Microchip PIC12C509 IDE 2.0 $1.15 0.65 8 41 1.5K 0 4 electronic infant toys
Texas Instruments MSP430F1121 IDE 0.35 $1.75 1.0 16 256 4K 0 10 wireless sensor
Motorola MC68HC912B32CFU8 IDE 225 $12.20 2.0 16 2K 32K 32K 8 automotive
Motorola ColdFire MCF5206FT33A | IDE,RTOS,CASE| 772 $15.27 9.0 32 1K 0 512M 33 internet appliance
Intel StrongARM SA-1110 IDE,RTOS,CASE [400 $35.00 29 32 24K 0 512M | 200 | PDA, smart phone

effort to create integrated tools and execution environments that would lead to commercial products that the average
industry programmer can use.

The Target Hardware: Tiny System Units

A tiny system unit (TSU) is a very small system-on-a-chip (SoC) device that includes one or more processors with
extremely limited resources, that would be replicated for each node in a pervasive computing application. The pri-
mary system constraints that dictate the characteristics of this TSU are power consumption, cost-per-unit, and phys-
ical size. Pervasive computing applications need processors that can operate for years without ever needing to
recharge or replace a battery. Regarding cost, microcontrollers that cost a few dollars each are commonly used in
many mass produced embedded applications, such as automobiles, consumer electronics, and home security sys-
tems. These applications replicate processors by the millions, where every dollar saved is a million dollar decrease
in production costs. Pervasive computing applications lead to the potential of replicating nodes by the billions, such
that each penny saved on the processor could result in a $10 million decrease in production costs.

A TSU’s processor will likely have internal small word sizes and data paths, and have only a few kilobytes of mem-
ory. They are designed to operate with machine cycles ranging from just a few kilohertz to 10 or 20 MHz. TSUs will
be an SoC generation device that replaces microcontrollers. The Atmel AVR 94K Series Field Programmable System
Level Integrated Circuit illustrates this new trend. The device includes an 8-bit microcontroller, a 40K gate field pro-
grammable gate array (FPGA), memory, multiple clock circuits, and a number of other system functions [1]. The
TSU will adopt and extend this approach, to provide at least one processor and possibly more, an FPGA so that the
I/O and computational functions can be configured, user-defined memory organization, and built-in micro-electro-
mechanical sensors and actuators, all within a device that is smaller than a dime.

Although the Atmel AVR 94K uses an 8-bit microprocessor core, we expect the majority of TSUs to have 16-bit
word sizes. A pure 8-bit processor with 8-bit internal data paths is inefficient, because most operations, including
data computations and accesses to the address space, still need to be done as 16-bit operations. But these small sys-
tems will not need 32-bit address spaces nor internal 32-bit data paths. Such larger processor cores will on average
always be larger and cost more than a 16-bit counterpart that is built using the same technology, because it needs a
larger die area and consequently bigger packaging. The 32-bit processor will also use more power than an equivalent
technology 16-bit processor. If 16-bits is not sufficient, it is more likely for 18 or 20-bit processors to emerge as an
extension of 16-bit processors for these special cases, rather than using a 32-bit processor system. As a result, we
expect a revolution in 16-bit processor technology for use as the core in TSUSs.

Table 1 compares several popular embedded processors. The Texas Instruments MSP430 series is an example of a
new generation of processors for embedded systems. It is a 16-bit RISC processor that uses technology developed to
build 32-bit devices. But by applying the techniques to the 16-bit platform, an ultra-low power very small processor
was created. Like 8-bit microcontrollers, the MSP430 has very limited memory, and is designed to operate with
machine clock rates in the Kilohertz to tens of Megahertz range. The Motorola 68HC12 series is another example of
the trend moving to 16-bit processors; it replaces the popular 68HC11 8-bit processors. Although the 68HC12 has a
larger CPU word size, its memory, size, cost, and power usage is comparable to the 68HC11. The processor cores
for a first generation of TSUs is expected to resemble the cores of the MSP430 and 68HC12.

Important to note from the information in Table 1 is the lack of development tools for the 16-bit processors. The
most commonly available tool is an Integrated Development Environment (IDE), which usually comprises of a com-
piler, assembler, linker, downloader, a symbolic debugger, and a simulator or emulator for the target processor. With
the exception of the simulators that became popular in the 1990s, today’s IDE represents the same set of tools avail-

Embedded Research Solutions Page 2 of 5

Miniature Software for Large Pervasive Computing Applications D. Stewart

able to embedded system developers in the 1970s. There are no advanced model-based design tools, component
standards, AOP languages, visual configuration management interfaces, hardware/software co-design trade-off
tools, or sophisticated real-time operating system (RTOS) or frameworks available. Such “modern” embedded soft-
ware technology has only been usable on the larger processors, because they result in code that has too much over-
head for TSUs.

The target TSU hardware establishes a need for new tools and techniques that aid in developing software for the tiny
devices in pervasive computing applications.

Miniaturizing Software for TSUs

How can software be implemented for TSUs such that it allows easy-to-use modern software engineering
approaches to be used, but results in code that is at least as efficient as an elegant assembly language program that
might have taken experts much too long to develop? This section looks at the issues and possible approaches.

Separation of concerns: Traditional embedded code includes multiple modules, with the entire program specified
using a single language. The problem with this approach is that independent concerns are merged into modules, and
some of those concerns are programmed in indirect ways. For example, a real-time software design may contain a
list of five tasks to execute. But nowhere in the code do we see a table that simply lists each of those tasks and their
attributes. Instead, today’s application-programmer interfaces (API) require the information be encoded into system
functions, such as calling the thread create function for each task, and passing attributes as arguments.

The AOP field shows great promise, because it promotes the separation of concerns. Different aspects of the soft-
ware include user components, task or component management, memory management, real-time constraints, error
detection and handling, as well as a few more. Some aspects are best programmed using a visual approach using a
model-based design tool. Other aspects, like memory management, might benefit more from a tabular representa-
tion. Yet other aspects, like the core code aspect, might still best be programmed using a procedural language like C
or Java. AOP recognizes that there is not a single language or method that is suitable for programming all concerns.

AOP research focusing specifically on miniature software is needed, because the requirements and constraints of
small embedded systems are very different as compared to desktop or larger embedded systems, and thus the con-
cerns are different. Each concern needs to be investigated independently, and additional research is needed for weav-
ing the separated concerns into a unified program that executes on the resource-constrained target hardware. [2]

Components: Model-based design is proving to be a valuable approach for reasoning about large, complex applica-
tions. The basic element in a design is the component. Given the definition of the component, code can be simulated,
components integrated, and large systems assembled from smaller subsystems. Current model-based design tech-
niques seek to generate code from models. Alternately, code for components is created using traditional program-
ming techniques, such as mapping each component to a C++ object.

To compliment the use of model-based design of large systems with many tiny processors, a bottom-up approach to
creating the components is needed. There could exist several domain-specific standard classes of components, such
as control system class, user-interface class, communication class, device driver class, and error handler class, such
that each component class had characteristics suited specifically for TSUs.

Implementing this bottom-up approach would likely yield different solutions as compared to starting with desktop
domain standards such as POSIX and CORBA, then trying to streamline them to build processes and components
for tiny embedded systems. By understanding the engineering issues related to implementing software on TSUs, the
component classes would be properly designed for their intended use. A suitable model programmer interface (MPI)
can then be designed that encapsulates the crucial parameters. An MPI is similar in concept to an API, but the target
user is the model-based design tool, not an application programmer. In the same way that assembly language for
RISC processors targets the compiler rather than an assembly language programmer, the interface for miniature soft-
ware components needs to target the tools used to build applications, and not target the programmer.

Real-world Interfacing: Significant effort has been made in device driver design to abstract the peculiarities of
hardware devices from the application. For many embedded systems, however, this is not practical, because the
device drivers are the application! This is especially true for miniature software, as most components in the system
interface to sensors, actuators, on-chip peripherals or communication mechanisms in a hardware-specific manner.

To successfully create miniature software, it is necessary to have encapsulation of hardware-specific details to be an
integral part of the component model [7]. A device driver thus becomes a component for a custom actuator or unique
configuration of sensors and processor I/O ports. The vision is that every hardware device, such as a temperature

Embedded Research Solutions Page 3 of 5

Miniature Software for Large Pervasive Computing Applications D. Stewart

sensor, position resolver, or motor controller has a corresponding software component. If the hardware is present in
the system, then so is the software component. But if the hardware is not in the system or it is changed, then the soft-
ware component undergoes a similar change, and managed by a framework configuration tool, as described next.

Frameworks: Today’s approach to improve the virtual abstraction and add complex functionality is to build a sys-
tem in layers. For example, middleware is a layer of software that sits above the operating system, to provide a uni-
fied component integration and management scheme. As another example, communication protocols are built by
defining layers, such as the data link, network, transport, and application layers. This layered approach is problem-
atic in the design of systems that need TSUs, because each layer increases the need for resources, and as discussed
above, resources are extremely limited. As a result, many of the techniques developed for larger systems, whether
they be desktop computing or embedded systems that use 32-bit processors, are not usable with TSUs.

Lightweight implementations of some techniques have been created to be used on TSUs, but these always require
sacrificing important functionality or flexibility. For example, a very small number of RTOS exist for 8-bit and 16-
bit processors. Their features, however, are usually limited to context switching, a fixed-priority scheduler, and pos-
sibly semaphores or message passing for interprocess communication. Unfortunately, these limited features are not
enough to implement full component-based applications, and do not include the generality that is desired to support
features such as dynamic scheduling, mobile code, or networking.

The alternative to using an RTOS and middleware is to build a component framework. A framework is an implemen-
tation of a modeling environment, providing the run-time mechanisms to manage and integrate components. It can
be viewed as a merger of the RTOS and middleware layers, but in such a way to provide only the resources needed
and to directly manage components, not processes. It provides functions for component initiation, activation and
real-time scheduling, management of memory, power, and on-chip devices, and mechanisms for both local and dis-
tributed inter-component communication and synchronization.

The framework needs to be a configurable entity, targeted to specific hardware architecture and application. There is
no room in a framework to include every feature just in case in might be used. Instead, to ensure efficient use of
resources, a framework configuration tool is envisioned, that configures the framework for a particular hard-
ware/application combination, and dynamically targets the framework to the appropriate TSU nodes. Unlike an
RTOS that is designed for the general case, each instance of the framework will contain the minimum combination
of mechanisms needed by the application—no more, no less. Furthermore, it will be possible to configure a separate
framework for each processor in the system. For example, one node might be a TSU for which a multi-rate cyclic
executive with static scheduling is sufficient to accomplish tasks. Another node might be a base-station with com-
plex code that requires preemption, in which case the framework could include a hardware-based dynamic schedul-
ing strategy. The same application components, however, plug into either framework.

Multi-Dimensional Optimization: In many applications, the term “optimization” refers to the amount of execution
time used by an application. With miniature software, however, there are many dimensions to the optimization prob-
lem. Each dimension is a different part of the system that could be optimized. Examples of the different dimensions
include processor utilization, memory, power usage, control system performance, physical size, communication
bandwidth, available features, sampling rates, and cost. There are dependencies between each of these dimensions,
such that improving the performance in one dimension may decrease performance in another. For example, consider
unit size vs. real-time sampling. The battery is likely the largest part by volume of the unit. To increase sampling rate
means an increase in battery size because more power is needed. If there is a size constraint on the device, then the
battery size becomes limited; so to obtain a certain real-time sampling, it might be necessary to alter some other part
of the system, like reducing how often data is transferred other nodes to conserve power. Transferring data less fre-
quently leads to the need for larger memory to store data locally before transmission, and this in turn increases cost.

There are many trade-offs similar to the above example that come into play when building software for TSUs. Find-
ing the right compromise between each item is a critical issue for the software designer. Currently, there are no tools
to help the designer make the best decisions, and so an ad-hoc approach is used to try and identify the right balance
between features and resource usage. Finding the optimal solution is an engineering problem that is similar to the
optimization problems encountered regularly in the control systems community. The mathematical foundation of
these existing optimization methods needs to be leveraged to create software engineering tools that allow the system
designer to quickly make the right decisions when implementing or configuring their software for a TSU.

Hardware/Software Co-Design: Resolving the resource usage problems of creating miniature software could lie in
successful adoption of hardware/software co-design solutions. For example, we designed a hardware-based interpro-

Embedded Research Solutions Page 4 of 5

Miniature Software for Large Pervasive Computing Applications D. Stewart

cess communication mechanism that eliminates all race conditions while reducing software overhead by up to 4000
percent [5]. The key is that when the particular interprocess communication mechanism is selected for use on a pro-
cessor, then a corresponding hardware component—in this case a pre-programmed DMA device—is also included.

For mass-produced devices, the hardware portion of a co-design can be built using a custom ASIC that includes a
processor soft core and the needed hardware add-ons. More commonly, however, TSUs, will include FPGAs that
can be configured in the field uniquely for each application [1,6]. The hardware definition language (HDL) used to
program these on-chip FPGA segments is, for all intents and purposes, software, even though the functionality is
more commonly linked to hardware design. Thus a miniature software design could include code written using an
HDL (such as Verilog or VHDL) in addition to code written with a traditional procedural language (like C or Java).

Networking of miniature devices: Pervasive computing applications targeted by miniature software are very local-
ized. In most cases, the shear number of nodes will force the use of wireless communication between nodes, as wir-
ing will be impractical or impossible. The nodes will be self-powered using very small batteries or ambient power
source technology, so that batteries do not need to be recharged or replaced for months or years. Emerging commu-
nication standards such as Bluetooth—even in its lowest power modes—require several orders of magnitude more
power than can be allotted for these pervasive computing applications. Instead, standardized ultra-lightweight com-
munication protocols that focus on being able to transmit only a few bits per second per node must be designed and
integrated into the component framework.

With dozens to hundreds of processors, it becomes impractical to explicitly program the inter-processor communi-
cation between each component. Since these applications will likely have some form of lightweight networking
capability on every node, such networking strategies must be an integral part of any solution. Trying to adapt desk-
top networking strategies to this environment have not worked in the past, and because of the major differences in
target environments, will likely not work in the future. Instead, entirely new approaches are needed.

The protocol must be encapsulated within the framework as a standard plug-in, with details of the communication
abstracted from each individual application component. Using model-based design tools, the application program-
mer can define the entire application as a set of components that collect and pass data amongst themselves, without
concern as to whether or not components are on the same processor. That is, the programming model of computation
must be independent of the communication mechanism. Furthermore, there must also be a single point for human
interfacing at runtime, allowing an application programmer to have a single personal computer or base station that
can program, monitor and control activity of any sensor, actuator, or processor in real-time on the network.

Summary

There is a need for new software engineering methods that apply specifically and exclusively to the implementation
of code for TSUs. These methods must not have the constraints of being compatible with techniques in the desktop
domain, nor be biased in selecting solutions that were successfully deployed in larger systems. It is expected that
top-down approaches including model-based tools and AOP techniques will be used to reason and design the large
complex applications, while a bottom-up hardware/software co-design approach is needed to create the components,
frameworks, device drivers, networking, and multi-dimensional resource optimization tools. The resulting code, that
we call miniature software, will then be well suited for large, pervasive computing applications.

References
[1] Atmel, AT94K Series FPSLIC Summary, http://www.atmel.com/atmel/acrobat/1138s.pdf.

[2] T.W. Carley and D.B. Stewart, “Visual aspect-oriented programming of resource constrained real-time embedded systems
using the port-based object model of computation,” Presented at OOPSLA Workshop on Domain Specific Visual Lan-
guage, October 2001, http://www.isis.vanderbilt.edu/oopsla2k1/Papers/Carley.pdf.

[3] J.Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “System architecture directions for network sensors,” Intl.
Conf- on Architectural Support for Programming Languages and Operating Systems, Cambridge, MA, Nov. 2000.

[4] Pervasive Computing Conference, sponsored by National Institute of Standards and Technology (NIST),
http://www.nist.gov/pc2000, Gaithersburg, MD, Jan. 2000.

[5] S. Srinivasan and D. Stewart, “High speed hardware-assisted real-time interprocess communication for embedded micro-
controllers,” Real-Time Systems Symposium, Orlando, FL. Dec. 2000.

[6] D. B. Stewart and B.L. Jacob, “Hardware/software co-design of i/o interfacing hardware and real-time device drivers for
embedded systems,” Real-Time Applications Symposium—Work-in-Progress, Vancouver, Canada, June 1999.

[7] D.B. Stewart, “Software components for real-time,” Embedded Systems Programming, v.13, n.13, Dec. 2000.

Embedded Research Solutions Page 5 of 5

	Miniature Software for Large Pervasive Computing Applications
	Introduction
	Pervasive Computing Applications
	The Target Hardware: Tiny System Units
	Miniaturizing Software for TSUs
	Summary
	References

